CE 329, Fall 2015

Assignment 19

Problem Statement

Recall the problem statement for Assignment 18: Reagent A undergoes an essentially irreversible isomerization reaction that obeys first-order kinetics $(A \rightarrow B)$. Both A and B are liquids at room temperature and both have extremely high boiling points. The rate constant at $163{ }^{\circ} \mathrm{C}$ is $0.2 \mathrm{~h}^{-1}$ and the activation energy associated with the rate constant is $28,960 \mathrm{cal} \mathrm{mol}^{-1}$. The heat of reaction is constant and is equal to $-20,750 \mathrm{cal} \mathrm{mol}^{-1}$. The heat capacities of species A and B may be assumed to be identical and equal to $125 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{C}^{-1}$. The initial charge to a perfectly mixed batch reactor contains no B , and it contains A at a concentration of 3.6 millimoles cm^{-3} and at $163^{\circ} \mathrm{C}$. You need to determine how long it will take to reach 97% conversion and what the final temperature will equal if the reactor operates adiabatically.

One might reasonably ask how the initial charge was heated to $163{ }^{\circ} \mathrm{C}$ without any reaction taking place. In a slightly more realistic scenario the initial charge ($3.6 \mathrm{mmol} \mathrm{A} \mathrm{cm}^{-3}$ and no B) to the $100 \mathrm{~cm}^{3}$ reactor would be at 300 K . In the first stage of processing, a heating jacket (heat transfer area of 11.2 cm^{2}, heat transfer coefficient of $12.1 \mathrm{cal} \mathrm{cm}^{-2} \mathrm{~h}^{-1} \mathrm{~K}^{-1}$) surrounding the reactor contains a well-mixed fluid at $200^{\circ} \mathrm{C}$. Once the reactor contents reaches $160^{\circ} \mathrm{C}$, the reactor is instantaneously (and magically?) switched to adiabatic operation which then continues until 97% conversion is attained. What will the total processing time be?

Notes: 1. The ODEs in this problem may be stiff. 2. With the use of an "IF" statement, it is possible to solve the ODEs for both stages using a single call to the numerical ODE solver.

